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1 Introduction

1.1 A growing ecosystem

ERIKA Enterprise1 started as a Ph.D. project more that 16 years ago on a single core 16-
bit MCU. Nowadays, ERIKA supports more than 15 CPU architectures, 20 compilers,
and a number of evaluation boards. All this thanks to the great community of companies
and University Labs (among them, a special role goes to the team of the ReTiS Lab of
the Scuola Superiore S. Anna) which are using the kernel in real products, University
courses, and Research Projects.

Despite the growth, the internal structure of the kernel (the kernel API as well as
the makefiles) recalls the structure of the very initial release, which was not thought to
support all this variety of hardware platforms and manage the complexity embodied in
latest raising platform such as multi-many core. We received over the years comments
and critics on how to manage various issues of the current structure, but we never went
on on a complete restructuring of the kernel, mainly because of the huge work involved.

1.2 The many-core challenge

However, the recent recent porting of ERIKA Enterprise on multi and manycores (such
as the Kalray MPPA port done in the context of the P-SOCRATES FP7 Project), as
well as the complexity of the AUTOSAR OS requirements, showed limitations in terms
of scalability and efficiency of the current kernel architecture, that cannot be overcome
with simple patches.

For that reason, it is now the right time to make a more efficient, safer, and even more
beautiful kernel, and for that reason Evidence decided to take the lead of a complete
rewrite of the ERIKA Enterprise codebase.

We are very excited of the work we are doing, because it will give the baseline for an
increased open-source development for next years!

1.3 We want your comments!

We do not want to do everything alone. We value comments from all users involved in
the ERIKA Enterprise development, use, and deployment. For this reason, we want to
share with you all comments and critics we received, trying to address them in the next
months.

1http://erika.tuxfamily.org
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Chapter 1. Introduction

1.4 This document

Instead of directly addressing the current issues, we thought that it would be best if we
could first list all the current problems and proposals for enhancements. In this way,
interested users and researchers from the community could, if they want, provide their
feedback helping improving the kernel structure.

This document lists all main known issues in the ERIKA Enterprise Kernel structure.
It is divided in chapters. Each chapter is dedicated to a specific topic, and it is divided
into a description of the current structure, its limitations, and possible ways to overcome
them.

Please send all feedback back to the ERIKA forum or directly to Paolo Gai (you can
use pj “at” evidence “dot” eu “dot” com).

1.5 Acknowledgments

The work described in this document started from the need of the porting of ERIKA
on Kalray MPPA, and it has been funded by the P-SOCRATES Project, 2, FP7-ICT-
611016.

2http://www.p-socrates.eu
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2 Makefiles and file structure

2.1 Current structure

The current file structure was inspired by the structure which was present in the Altera
Nios II IDE components.

The current structure is as follows:

• The main directories of the project are:

pkg This is the directory containing the ERIKA Enterprise kernel. All the code
inside this directory follows the GPL2+Linking Exception license. All the
code is structured in components.

contrib This is a repository where third party contributions are stored. The code
in this directory may not follow the GPL2+Linking Exception license.

testcase This is a container for the regression tests.

examples This is a container for the examples for the various boards and archi-
tectures.

• The pkg directory is structured as a first level of directories. The first level direc-
tories are:

cfg Makefiles and scripts.

cpu CPU architectures/instruction sets. interrupt disabling/enabling, context
change, interrupt handling goes here.

mcu Family of part numbers (e.g., PIC24xxx). Contains basic peripherals (Serial,
SPI, I2C, ...), interrupt handling1

board Physical boards. Programming LEDs, displays, ... goes her.

kernel All the scheduling infrastructure goes here, including research kernels,
OSEK/AUTOSAR implementation

test Assertions used during the testcases.

Inside these first-level directories, there is one directory per component. The pkg

directory also has collector include files such as ee.h, which are included by all
application files.

• Each tail component is mainly composed by following directories:

1only for architectures such as ARM7 which does not have an unified interrupt controller along the
family.
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Chapter 2. Makefiles and file structure

cfg This directory contains the file cfg.mk, which stores the compile instruction
for the component. It also stores debug scripts.

inc This directory contains the include files defined by the component.

src This directory contains the .C/.S source files.

The configuration file has the following characteristic:

• The number of items defined in the OIL file is exported as a #define (example:
EE MAX TASK). These #defines are used inside the code to check the limits of the
IDs passed.

The makefile structure is structured as follows:

• Each application has a makefile, which is generated from the application OIL file.

• the makefile includes a file rules.mk, which is a collector that includes architecture-
dependent file, typically stored inside the pkg/cfg directory.

• Each leaf component has a cfg.mk file. All the cfg.mk file are included by
rules.mk.

• The makefile contains a variable EEOPT. EEOPT lists a set of features. The features
are used in two ways:

– inside the cfg.mk, to select which are the files that needs to be compiled
(example, PIC30 );

– inside the C code, to select specific switches inside the code (example, MULTI ).
EEOPT values are translated into #defines into the generated file eecfg.h.

The compilation process generates a Debug directory. The Debug Directory contains:

eecfg.h The include file which configures the application part of the kernel (how many
tasks, task names, ...);

eecfg.c The kernel data structures;

makefile The makefile;

obj A copy of the directory structure of the project, with .o (object) and .d (makefile
dependency) files;

libee.a A library containing all the kernel object files (note it does NOT include
eecfg.c);

ELF file and debug scripts Finally, all the compiled files and debug scripts.

12



Chapter 2. Makefiles and file structure

2.2 Limitations of the current structure

Although the file structure presented in Section 2.1 worked well for many years, we found
out a number of limitations that suggest a structural change to make the system more
usable.

The main requirements come from users who needed to integrate the kernel inside
already existing development processes

The following is a short list of them, with a rationale.

1. Too many directories.

There is often no need to have a cfg/inc/pkg directory containing a few files.
Also, the path tend to become too long when inside an Eclipse plugin and some
compiler stopped working.

2. Include files difficult to be separated from source files.

To isolate all include files (needed for a binary distribution of the code) you need
to run a script.

3. Files contain #include directives with path names.

To store all .C/.h files in a single directory you need to change the files to remove
the path names.

4. Need for the -D directive on the compiler

The files can be compiled only with the -D to add all EEOPT switches. This makes
compilation more difficult in a generic environment.

5. There is no need to have MCU and board at the main level.

At the end an MCU/board is useful only within a CPU. With many CPUs/boards
supported, the result is somehow confusing.

6. Debug directory is misleading for the output of the compilation process.

In reality Debug is more the result of the compilation process. something like
output or out is more suited2.

7. The ERIKA kernel is stored somewhere else from the application code.

Local modifications to kernel files for a single application becomes difficult.

8. Listing APP SRC files inside the OIL file on big applications is impractical.

9. Eclipse CDT does not recognize the presence of the include files which are located
somewhere else. This results in a number of fake errors provided by the CDT

2out was the original output directory in the first ERIKA version.
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Chapter 2. Makefiles and file structure

2.3 New structure

To overcome the limitations noted in Section 2.2, we propose the structure defined in
the following points:

1. cfg/inc/src directories collapsed.

Components will be stored in a single directory. include files and source files mixed.

2. no path names in include files.

That is, instead of:

#include ‘‘mcu/msp430/inc/ee uart.h’’

we will have:

#include ‘‘ee uart.h’’

which imposes that all filenames will have to be somehow different.

3. Separation between kernel and application configuration.

• It must be possible to compile the kernel once and link it to different appli-
cations (with compatible OIL files)

• This means also that the kernel must not depend on the number of application
objects defined inside the application configuration.

• eecfg.[h|c] will store the application configuration that will contain the
definition of constant variables used inside the kernel to check the object IDs

4. MCU/board stored inside the CPU layer

We will store the MCU/board support under the CPU layer, in a way to cluster the
boards together, thus limiting the complexity of the mcu and boards directories
only to the mcu/boards which make sense under a given CPU.

5. 2-step build process. See Section 2.3.1.

2.3.1 2-step build process

2.3.1.1 Repository directory structure

mk/pull.mk makefile script which is responsible for copying all files in the final directory

pull.mk if inside an internal directory there is a pull.mk, then that file will contain
the information needed to copy the local files into the workspace

pkg/arch/ARCHNAME one directory per CPU architecture. may have subdirectories
to contain what was before named as mcu and board

pkg/kernel/ARCHNAME one directory per scheduler (more or less with the old con-
tent)

14



Chapter 2. Makefiles and file structure

2.3.1.2 OIL files

The OIL configuration file will be considered as containing two parts:

• Kernel configuration, typically called os.oil3, which includes what is typically
stored inside the OS OIL object.

• Application configuration, typically called conf.oil or appl.oil, which includes
tasks, alarms, resources, . . .

The application may contain either one OIL file (including both parts) or two OIL files:

Single file In case we have a single OIL file, the two steps are performed in sequence.

Two files In case we have two files, the OS file is processed first to create the Kernel
build. Once done, the application build can be done. The application build does
not require to remake the Kernel each time.

2.3.1.3 Kernel/BSP Build

The idea is that the Kernel Build will generate a library that allows later linking with
one4 application.

The object of the build is to produce a directory named erika5 (typically at the same
level of the OIL file inside the working directory/Eclipse workspace), which contains all
information needed to build an application based on the specific kernel OIL file.

The erika directory contains a set of subdirectories, each one containing a specific
kind of file:

erika/ The main directory contains license and readme information

erika/inc The inc directory contains a copy of all include files needed to use the
ERIKA library6. The directory should be possibly without inner hierarchies7.
When compiling an application, this is the only point where the compiler should
point with the -I compiler directive. The directory contains also the file ee oscfg.h,
which contains the configuration of the kernel.

erika/src The src directory contains all source files plus internal include files8 which
are needed to compile the ERIKA library. Inner hierarchies are discouraged. The
main idea is: everything .c inside this directory should be compiled and put inside
the ERIKA library. The directory contains also the file ee oscfg.c, which contains
the configuration of the kernel.

3another name could be erika.oil.
4...or more (although building the same kernel OIL file with 2 applications is not supported yet).
5other possible names could be os (but the kernel does not only offer the OS...), or bsp
6A file only used to compile the kernel can be placed here or (better) in the src directory.
7Hierarchies could happen in case we need to somehow link third party modules like LWIP. This has

to be further analyzed.
8These are files needed by the kernel files but which does not export any interface to the final appli-

cation.
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Chapter 2. Makefiles and file structure

erika/pull The pull directory contains the pull.mk9 used to pull the erika/ directory
structure from the files in the Eclipse plugins. The pull.mk makefile is the only
makefile which has a relationship with the ERIKA files location. All other makefiles
in the system will work locally.

The directory may also contain a OIL/EMF file10 which stores the Kernel config-
uration used to build the package11.

erika/out The out directory contains the products of the compilation, that is the
dependency files .d and the object files .o. Other sub-products may be stored
here (.S, ...). The idea is that all files in this directory can be removed if we want
to reduce space in a binary distribution.

erika/lib The lib directory contains everything binary or source needed to build an
application. The directory will contain the compiled libraries (libee.a at least,
but there could be more in case of external libraries are created in the compilation
process), the locator file to be used for the compilation, and eventually some boot
code (e.g., crt0.c) which may need to be compiled when compiling the application.

erika/dbg The dbg directory contains all scripts needed for the debugging of the specific
platform. Typically these scripts are copied (or parsed) into the application build
directory.

erika/mk The mk directory contains the makefile needed to compile the library12, plus
an app.mk needed to compile an application.

The build will proceed with the following steps:

Step 1 Basic structure

• Input: os.oil

• Action: Build Project from Eclipse, equivalent to calling Rt-Druid from com-
mand line

• Output: the erika/pull directory

– a copy or export of the OIL file used to generate the structure, into
erika/pull

– the erika/pull/pull.mk, erika/pull/ee oscfg h.txt, erika/pull/

ee oscfg c.txt files.

– additional files (ORTI, ...) generated by RT-Druid

9The name of the file is not makefile in purpose. The reason is that there will be only one file named
makefile in the erika directory structure, and will be the makefile used to build the kernel.

10We initially thought OIL should be best because human readable; EMF is fine too. . . everything will
depend on the tool implementation.

11The idea is that the erika directory will be portable without other dependencies with other OIL files.
12In this way the library can be remade easily when you do some local modifications, e.g. for quick

demos.
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Chapter 2. Makefiles and file structure

– Those files are the same as the real ones, only with a different extension.
In this way, we obtain that all outputs of the Step 1 are included in a
single directory.

Step 2 Building the BSP structure

• Input: erika/pull directory read only.

• Action: launch the pull.mk makefile in erika/pull. The target that will be called
is named pull, which will call in sequence a series of targets.

• Output: erika/{src|inc|mk|dbg} directories

– target create src

∗ erika/src and erika/inc filled with BSP include and C files

∗ erika/pull/ee oscfg h.txt and erika/cfg/ee oscfg c.txt copied into
the erika/inc and erika/src directories

– target create mk

∗ erika/mk directory filled, which will include a makefile to compile the
library, app.mk rules to compile the application, and an OIL file with the
configuration.

– target create dbg

∗ erika/dbg directory filled

– At the end of Step 2 the pull directory can be deleted if needed. Apart the
pull directory, all files in under erika have local directory names and they
do not reference the location where the ERIKA distribution is located.

Step 3 Building the ERIKA library

• Input: erika/{src|inc|mk|dbg} directories read only.

• Action: launch the makefile in erika/mk.

• Output: erika/{out|lib} directories

– All .c files inside erika/src are compiled inside erika/out

– A library with all files needed for linking is generated into erika/lib (this
may include a locator file, a crt0.c

– If there is need to generate debug scripts at this stage, they should be put
into erika/lib as erika/dbg should be considered read-only !

Table 2.1 shows the dependencies on each step of the build process. Lines contains the
items required/generated, columns contains the steps in the process.

17
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Description App edit Step 1 Step 2 Step 3 Application Build

os.oil w r - - -
erika/pull - w r d d
erika/inc - - w r r
erika/src - - w r d
erika/mk - - w r r
erika/dbg - - w - r
erika/out - - - w d
erika/lib - - - w r

Table 2.1: Build process dependencies. Legend: r read-only in this phase; w written in
this phase; d can be deleted in this phase; - does not exists yet, or not used.

2.3.1.4 Application Build

The basic idea here is that we build the application after the steps outlined in Section
2.3.1.3 are done. A directory out is created and inside that directory everything happens.
The application makefiles should be as more linear as possible (in some case they could
be derived directly by the IDE used for the compilation.

The structure of the application build is as follows:

erika/ This is the directory generated at the previous step in Section 2.3.1.3. The
hypothesis is that the directories erika/{inc|mk|dbg|lib} are present. The other
directories (erika/{pull|src|out}) are not required and could be not present in
case of a “binary distribution” of ERIKA.

out/ This is the main target directory generated by RT-Druid.

out/ee appcfg.{h|c} These files are generated by RT-Druid and contain the applica-
tion configuration derived from the appl.oil file

out/makefile This is the application makefile. The only dependency of this makefile is
with the makefile stub stored in erika/mk. Important: no dependencies outside
the current workspace.

out/obj This contains the object files which are produced during the compilation

The build will proceed with the following steps:

Step 4 Basic structure

• Input: appl.oil, erika/mk OIL configuration files.

• Action: RT-Druid is launched.

• Output: out/ee appcfg.{h|c}, out/makefile.

18
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– RT-Druid will use erika/mk OIL files to get the missing information
not present in appl.oil. If erika/mk is not present, the system checks
the existence of an os.oil file or the appl.oil file (in this order13) to
generate the erika/ directory as in Section 2.3.1.3.

– out/makefile contains an include reference to the erika/mk makefiles.

Step 5 Application compilation

• Input: out/makefile

• Action: the makefile all target is launched

• Output:

– The first thing must be a consistency check. The system should check
whether the date of the configuration file inside erika/mk is greater than
both os.oil and appl.oil. In that case, an error is printed and the makefile
stops14.

– Then, all .c files are compiled, using a -I directive including all include
files present in the erika/ directory.

– Libraries, linker and debug scripts should be derived from those present
inside erika/

– Finally, Debug scripts should be copied.

2.3.2 Build Environment

2.3.2.1 Common

• ERIKA FILES
Erika Enterprise Repository Path (relative or absolute)

• PRJ BASE
Erika Entrprise Project Base Directory Path (relative or absolute)

• RTD VER
RT-Druid Version Number (chiedere a nicola la sempantica di tale numero).

• CMN OPT
Common Build Options. (CMN OPT attribute).

13To be checked: is this the best order?
14It is out of the scope for the makefile generated by RT-Druid to run automatically RT-Druid. But

they should check that what they are compiling is somehow correct at least with the dates.
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Chapter 2. Makefiles and file structure

2.3.2.2 Kernel/BSP

• OS BASE
Erika Enterprise Base Directory Path (relative or absolute).

• OS OPT
Erika Enterprise Build Options. (OS OPT attribute).

2.3.2.3 Application

• APP BASE
Application Output Base Directory Path (relative or absolute).

• APP OPT
Application Build Options. (APP OPT attribute).

2.3.2.4 Libraries

• LIB OPT
External Libraries Build Options. (LIB OPT attribute).

2.3.2.5 Arch - AVR8

• ¡Arch¿ MCU - AVR8 MCU
MCU model for ¡Arch¿ - AVR8 architecture. (MODEL attribute of MCU DATA
object.)

– atmega328p: Atmel ATMega328P.

2.3.3 Build Options

2.3.3.1 Common

2.3.3.2 Kernel/BSP

• OS
Enable Operating System Build.

• OS DEBUG
Enable Debug Symbols Generation for OS.

2.3.3.3 Application

• APP
Enable Application Build.

• APP DEBUG
Enable Debug Symbols Generation for Application.
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Chapter 2. Makefiles and file structure

2.3.3.4 Librarires

• LIB
Enable Operating System Build.

• LIB DEBUG
Enable Debug Symbols Generation for Libraries.

2.3.3.5 Arch - AVR8

• TEST
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3 Requirements coming from MISRA

3.1 Current structure

The ERIKA Enterprise kernel was developed since 2000 in an incremental fashion. The
code structure has changed significantly since then, but it still has a lot from the original
architecture design.

3.2 Limitations of the current structure

1. Names starting with EE* are not allowed.

2. Unnecessary levels of #defines makes the code hard to read

3. Type definition and configuration should be done in a simpler way. Names for types
have sometime a non-uniform “structure” (e.g., EE TYPEPRIO and StatusType)

4. Code with lines longer than 80 chars, with strange characters, with different CRLF
conventions, with different indentation

5. Functions should always have a single exit point. This is linked to the usage of
TerminateTask inside Task bodies.

3.3 New structure

1. We should try to avoid using symbol names which are prohibited by MISRA, and
in particular the EE* symbols (which unfortunately are everywhere in the current
code)

2. We should be careful on naming types, and we should define a rule on how types
are named

3. We should define a suggested indentation rule, as well as a rule for Emacs/Notepad++/...
that enforces it
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4 Context change mechanism

4.1 Current structure

The current structure of the context change mechanism in ERIKA can be shortly de-
scribed as follows:

1. The kernel HAL internally maintain the concept of a stack. A stack is a region of
memory which can be used by the running code to save information such as frames
of the function calls, temporary variables, and so on.

2. In the Mono-stack version of ERIKA, there is only one stack; in the Multi-stack
version of ERIKA there can be more than one stack, with optionally an additional
stack for interrupt frames.

3. Each stack can host a 1 or more tasks, plus the interrupt frames1. Tasks are
statically allocated to stacks. A task cannot be present more than once on a stack.

4. The typical ERIKA Enterprise Multi-stack configuration allocates all basic tasks
on a “shared stack”, then it allocates one stack for each extended task, and finally
there can be an optional stack for interrupt frames.

Figure 4.1.a shows a typical Mono-stack frame configuration for Kernels FP and EDF:

• We suppose task T1 is running.

• Task T1 activates T2 using a call to ActivateTask.

• The ActivateTask understands that T2 has to preemt T1. It marks the task
witch, and then calls a HAL function, which in turns executes T2 as a normal
function. The Caller-saved registers are not saved because they are expected to be
dirty at the end of the HAL call. The Callee-saved registers are (typically) NOT
saved because they will be saved, if needed, by T2 upwards. In other words, the
preemption is implemented without explicitly saving registers. This also means
that a value in a register in a task may refer to a value currently needed by a
preempted task; it is therefore important that all functions in the kernel use the
same register convention.

• T2 is interrupted by an IRQ, which in turns activates task T3 preempting T2. In
this case, The IRQ handler saves the Caller-saved registers (IRQ saved in Figure
4.1.a), marks that T3 is the running task, and finally executes T3.

1If they are not allocated to the separate stack in a Multi-stack configuration.
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Chapter 4. Context change mechanism

• The colors in 4.1.a separates what part of the stack is property of a task.

Figure 4.1.b shows a typical Mono-stack frame configuration for the OSEK/VDX Ker-
nels. The main difference is how the system handles the implementation of the TerminateTask
call. In particular, TerminateTask is implemented locally to a task. That is, the task
body really called by the kernel is not the real task body, but is a thread stub which
saves the Callee-saved registers before calling the real function. This has the advantage
to allow an implementation with and without TerminateTask by using the same HAL.
Again, colors in 4.1.b shows the “property” of the various stack parts. Note that the
Thread stub and the Terminate registers are property of the executing thread.

Figure 4.1: ERIKA Enterprise context change structure, monostack.

Figure 4.2 shows the behavior implemented in case of a multi-stack configuration. In
particular:

• The main difference is what happens when a task is preempted (synchronously or
through an interrupt) by another task.

• In those cases, the stack (not the task running into it!) is always left in a known
state when the kernel changes the stack. in particular, the system saves the Caller-
saved registers (the same saved in the TerminateTask!) on the top of each used
stack. Note that at the beginning each stack is initialized having a top of stack
which will include some spare space to allocate those Caller-saved registers that
will be popped when the specific stack will become the active one. For that reason,
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Chapter 4. Context change mechanism

please note the different colors, meaning that the saved registers are property of
the stack and not of a specific task.

• When an interrupt arrives, after saving the Caller-saved registers, the stack may
be changed to the interrupt stack. Subsequent nested interrupts will be allocated
on that separate stack. When the last interrupt finishes, the stack is moved back
to the preempted task before calling the scheduler.

Figure 4.2: ERIKA Enterprise context change structure, multistack.

Figure 4.3 shows the behavior of a multistack configuration with TerminateTask.

4.2 Limitations of the current structure

The current implementation has the following limitations:

• The mono-stack implementation without TerminateTask is highly efficient, but is
not the most common one.

• The typical configuration is the one of OSEK/VDX / AUTOSAR OS, with Termi-
nateTask. In that case (see Figure 4.3), Caller-saved registers are typically saved
twice (in Figure 4.3, one for Terminate, when the task starts, and one for savestk,
when the task is preempted).

• The TerminateTask always restore the saved registers also when the task is the
only one in the stack (in that case, the saved registers could be simply discarded!).
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Figure 4.3: ERIKA Enterprise context change structure, multistack with TerminateTask.

4.3 New structure

The main ideas of the new implementation are:

• We try to optimize the case where the system is used as part of OSEK/VDX -
AUTOSAR, that is, when used in conjunction with the TerminateTask primitive.

• Mono-stack and Multi-stack versions of the kernel must be supported.

• TerminateTask registers are not saved at the beginning of a task, but are only saved
when the task is preempted. In other words, the saved registers are property of
the preempted task, and not of the preempting task

Figure 4.4 shows the structure of the context change in the new proposal. In particular:

• Registers are saved only in case of a preemption by a task or IRQ.

• The stack frame which is saved contains a “Previous Top Of Stack (TOS)” pointer
to implement the possibility of having more than one task on the same stack.

• Registers are property of the preempted thread, and there are no registers which
are property “of the stack” as in Figure 4.3.

• Task termination can be implemented without the need of reloading saved registers
as it happens in the old version. The stack frame is simply discarded because the
“current TOS” is not modified.
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Chapter 4. Context change mechanism

Figure 4.4: ERIKA Enterprise context change structure, new version.

It is possible to implement this context change function with a platform independent
HAL version that includes calls to specific functions that will implement the wanted
behavior.

We also need to understand if we can do some optimizations with regards to Terminate-
Task. In particular, the fact that TerminateTask does not return makes it non-MISRA
compliant when used in the middle of a task. For that reason, we could have some kind
of optimization linked to the fact that we can make the hyphothesis that TerminateTask
will be alsoways the last thing called at the end of a task. See also Section 3.2 about
MISRA compliancy.
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5 Multicore support

5.1 Current structure

The Multicore support in ERIKA was initially developed in 2001 and had the following
set of features:

• Partitioned scheduling. One copy of the RTOS for each core.

• Compilation flow that is done in steps:

1. The first CPU, named “master”, is compiled with all the global data struc-
tures included;

2. From the first CPU ELF, a set of symbols are extracted and inserted in the
locator files of the other CPUs;

3. The other CPUs are compiled afterwards with the visibility of the global data
structures;

This was needed to address the fact that early multicore CPUs (such as ST Janus)
did not have a homogeneous address space.

• MSRP algorithms, G-T queuing spin-locks implementation, global resources de-
fined by the mapping on the OIL file.

Then, since the support of multicore PPC, we implemented the following features:

• Allocation of shared data using compiler sections.

Afterwards, with the implementation of the AUTOSAR compliance, we implemented
the following features:

• MSRP deprecated, because AUTOSAR does not have queuing spin locks. Syn-
chronous RPC implemented instead of asynchronous notifications.

Finally, a Single ELF version of a multicore was done using compiler-specific features
of the HighTec compiler. It is not a real Single-ELF version, but more a “big” ELF
containing a collage of the other ELFs.

Additional note: given an “object”, the original code of ERIKA had one array per
object member, without the usage of structures. The rationale behind this was to save
as much RAM as possible avoiding compiler struct packing with padding.
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5.2 Limitations of the current structure

• Global addressing disabled to allow sharing when cache coherence is not available
(see Altera Nios II implementation);

• Task identifiers implemented as local defines. Their numbers are local on the
CPUs, and this may be a problem when sharing a task number inside a global
data structure;

• Partitioning of the code based on partitioning .c files. Gets complicated for big
projects.

• Does not scale for a large number of CPUs

• Data structures with arrays only limits the efficiency of the code (the compiler has
always to load the base address), and its readability

5.3 New structure

5.3.1 Multicore-related things

The new structure tries to overcome the previous implementation with the following
features:

• The target architectures are multicore CPUS which have an homogeneous memory
address space. Cache coherence mechanisms are not a requirement. Architectures
following this approach are for example:

– Single cores (as a special case of multicores!).

– PPC like Leopard, Cobra55, K2, ...

– Tricore AURIX.

• Single-ELF compilation. All code must be compiled for all cores in a single exe-
cutable. All symbols are visible from all CPUs.

• Since there is only one ELF, Task IDs are global and uniform across cores.

• There is one copy of the kernel code across all the cores.

• All this must be obtained by maintaining application API compatibility with the
previous version of ERIKA. Data structures, and internal API may change. We
will try to maintain the OIL structure as similar as possible compared to the new
version.
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5.3.2 Data structures

About the data structures used in the kernel:

• we should give the possibility to share data among cores

• data structures should contain as much data as possible in flash

• pointers should be used with care. Rule of thumb:

– flash to flash allowed

– flash to RAM allowed

– RAM to RAM are not suggested. The suggested way is to use integers to
index arrays

• structs should be used instead of arrays to store common data related to the same
object.

• we should be careful on sizes of indexes. Probably 2 bytes are enough for all usages.
Maybe we should create a type exactly for that.

• Figure 5.1 shows a sketch of the idea behind the data structures. Data structures
are named as Descriptor Blocks (DB, in Flash) or Control Blocks (CB, in RAM).
Everything can be reached by two global pointers (one for the kernel, one for the
CPU layer (HAL)

• This is a short description of the data structures involved:

KDB Kernel Descriptor Block. Contains the main pointer to all the data struc-
tures of the kernel. It stays in Flash, and it should be shared among all
CPUs

CDB/CCB CPU Descriptor/Control Block. It stays in the Kernel. It contains all
the information related to the specific CPU (ready queue, ...).

– In the HAL, there is a pointer to the CPU-specific Kernel data struc-
tures. There is an architecture dependent global pointer that the kernel
primitive implicitly calls to get the right CDB of the kernel.

TDB/TCB Task Descriptor/Control block. Stores every info in the Kernel needed
about a task

HDB/HCB HAL Descriptor/Control block. Stores every info about a task ab-
straction in the HAL

SDB/SCB Stack Descriptor/Control block. Stores info about a stack. it is sepa-
rated from HDB/HCB because we want to support stack sharing

• The data structures as they are designed allow the possibility to place CPU de-
pendent content (e.g., all info in RAM about tasks) inside CPU private memories

• Kernel data and HAL data are still separated

30



Chapter 5. Multicore support

Figure 5.1: Sketch of the data structures.

5.3.3 IRQ and tasks

AUTOSAR specifies tight requirements for the protection levels at which IRQ handlers
should run.

The current handling is prone to duplication of code because the same issues about
protection applies to both IRQs and Tasks.

Thus, we have here the opportunity to handle IRQ “as tasks”. The idea is to create a
proper interrupt handler that in a “fast way” is able to schedule a “special task”, which
is put on the stack and executed immediately.

This will add some overhead to the system, but will also simplify the memory protec-
tion handling.
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6 RT-Druid

6.1 Current structure

One of the limitations that is currently seen in RT-Druid is the fact that it is difficult
to modify RT-Druid for adding a modification to the OIL files.

Moreover, the tool is divided in a set of plugins, with code snippets repeated various
times in each architecture

6.2 Limitations of the current structure

Adding a modification to the OIL requires either a XSLT transformation, or Java pro-
gramming, which makes modifications difficult to implement.

6.3 New structure

The idea would be to give the possibility to configure different kernels using templates.
We are considering Acceleo as a template language

One of the requirements is to keep Eclipse and EMF as the reference platform, as
it is widely used in the industrial/automotive contexts. The idea is then to have two
EMF representations of the OIL file, one for the XText editor, one for the Acceleo code
generator.

Moreover, we will split the code generator in two parts:

• the engine, which will be an Eclipse plugin, responsible for the generation;

• the configuration files, which will stay inside the ERIKA repository.
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7 Other topics

7.1 Kernels more “dynamic”

With “new kernel semantics” we mean situations in which the kernel should be more
“dynamic”.

Examples are simil-POSIX APIs, FreeRTOS APIs, and in general APIs where we can
dynamically create tasks.

Although not mandatory for AUTOSAR OS implementations, we should take a look
at the possibility of supporting those dynamic APIs.

7.2 Tickless

Support for tickless timers in the alarms is welcome. To be understood how to handle
it together with IncrementCounter AUTOSAR primitive.

7.3 Visualization of the schedule

Various people requested the possibility to have simple tools which could help visualizing
the schedule of the tasks in the system. No action has been taken so far on this topic.

Note that commercial tools providing
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